The radius of the steel rod is \( r = 20 \) mm \( = 20 \times 10^{-3} \) m.
The length of the steel rod is \( L = 2 \) m.
The applied force is \( F = 400 \) kN \( = 400 \times 10^3 \) N.
Young's modulus of steel is \( Y = 2 \times 10^{11} \) Nm\(^{-2} \).
First, calculate the cross-sectional area \( A \) of the rod:
$$ A = \pi r^2 = \pi (20 \times 10^{-3})^2 = \pi (400 \times 10^{-6}) = 4\pi \times 10^{-4} \text{ m}^2 $$
Using \( \pi \approx 3.
14 \), \( A = 4 \times 3.
14 \times 10^{-4} = 12.
56 \times 10^{-4} \text{ m}^2 \).
Next, calculate the stress \( \sigma \):
$$ \sigma = \frac{F}{A} = \frac{400 \times 10^3}{12.
56 \times 10^{-4}} = \frac{4 \times 10^5}{1.
256 \times 10^{-3}} = \frac{4}{1.
256} \times 10^8 \approx 3.
18 \times 10^8 \text{ Nm}^{-2} $$
Now, calculate the strain \( \epsilon \) using Young's modulus \( Y = \frac{\sigma}{\epsilon} \):
$$ \epsilon = \frac{\sigma}{Y} = \frac{3.
18 \times 10^8}{2 \times 10^{11}} = 1.
59 \times 10^{-3} $$
Convert the strain to percentage:
$$ \text{Strain percentage} = \epsilon \times 100\
= 1.
59 \times 10^{-3} \times 100\
= 0.
159\
\approx 0.
16\
$$
The values of stress and strain are approximately \( 3.
18 \times 10^8 \) Nm\(^{-2} \) and \( 0.
16\
\) respectively.