Step 1: Understanding Faraday’s Law of Electromagnetic Induction
According to Faraday’s Law, the induced EMF (\( \mathcal{E} \)) is given by:
\[
\mathcal{E} = - \frac{d\Phi}{dt}
\]
where \( \Phi \) is the magnetic flux given by:
\[
\Phi = B A
\]
Step 2: Calculating the Change in Flux
Given:
\[
B_{{initial}} = 0.10 { T}, \quad B_{{final}} = 0 { T}
\]
\[
A = (10 { cm})^2 = (0.1 { m})^2 = 0.01 { m}^2
\]
\[
dt = 0.70 { s}
\]
Change in flux:
\[
\Delta \Phi = A (B_{{final}} - B_{{initial}})
\]
\[
\Delta \Phi = (0.01) \times (0 - 0.10)
\]
\[
\Delta \Phi = - 10^{-3} { Wb}
\]
Step 3: Calculating Induced EMF
\[
\mathcal{E} = - \frac{\Delta \Phi}{dt}
\]
\[
\mathcal{E} = - \frac{- 10^{-3}}{0.70}
\]
\[
\mathcal{E} \approx 1.43 \times 10^{-3} { V}
\]
Step 4: Finding the Induced Current
Using Ohm’s Law, the induced current is:
\[
I = \frac{\mathcal{E}}{R}
\]
\[
I = \frac{1.43 \times 10^{-3}}{0.5}
\]
\[
I = 2.86 \times 10^{-3} { A}
\]
Thus, the magnitude of the induced current is \( 2.86 \times 10^{-3} \) A.