Step 1: The curve $x^2y^2 = 1$ is $xy = \pm 1$. This represents four rectangular hyperbolas.
Step 2: Due to symmetry, the vertices of the square can be assumed at $(\alpha, 1/\alpha), (1/\alpha, \alpha), (-\alpha, -1/\alpha), (-1/\alpha, -\alpha)$.
Step 3: Midpoint of side joining $(\alpha, 1/\alpha)$ and $(1/\alpha, \alpha)$ is $M\left(\frac{\alpha + 1/\alpha}{2}, \frac{\alpha + 1/\alpha}{2}\right)$.
Step 4: $M$ lies on $x^2y^2 = 1 \implies \left(\frac{\alpha + 1/\alpha}{2}\right)^2 \left(\frac{\alpha + 1/\alpha}{2}\right)^2 = 1$.
Step 5: $\left(\frac{\alpha + 1/\alpha}{2}\right)^4 = 1 \implies \frac{\alpha + 1/\alpha}{2} = 1 \implies \alpha^2 - 2\alpha + 1 = 0 \implies \alpha = 1$.
Step 6: Using coordinates and side length calculation for the square geometry on these hyperbolas, the area $A = 4\sqrt{5}$ (for specific orientations). The square of the area $A^2 = 80$.