Step 1: Given Information
We are given the following conditions:
- The prism has an angle of \( \theta = 60^\circ \).
- The refractive indices of the left and right halves of the prism are \( n_1 \) and \( n_2 \), respectively, where \( n_2 \geq n_1 \).
- The angle of incidence \( i \) is chosen such that the incident light rays will have minimum deviation when \( n_1 = n_2 = n \).
- For the case of unequal refractive indices, \( n_1 = n \) and \( n_2 = n + \Delta n \) (where \( \Delta n \ll n \)), the angle of emergence is \( e = i + \Delta e \).
We are asked to determine which of the following statements is/are correct.
Step 2: Minimum Deviation and Relation between \( \Delta e \) and \( \Delta n \)
At minimum deviation, the incident light ray undergoes the least bending. For a prism with a refractive index \( n_1 = n_2 = n \), the angle of emergence \( e \) and the angle of incidence \( i \) are related by the prism's geometry.
When the refractive indices of the left and right halves are unequal, with \( n_2 = n + \Delta n \), the angle of emergence \( e \) will shift. Specifically, the shift in the angle of emergence, \( \Delta e \), will depend on the change in the refractive index, \( \Delta n \). This change is proportional to \( \Delta n \). Hence, the shift in the angle of emergence is directly proportional to the change in the refractive index.
Therefore, statement (B) is correct: \( \Delta e \) is proportional to \( \Delta n \).
Step 3: Estimating \( \Delta e \) for \( \Delta n = 2.8 \times 10^{-3} \)
We are given that \( \Delta n = 2.8 \times 10^{-3} \). We need to estimate the value of \( \Delta e \), which lies between 2.0 and 3.0 milliradians. The value of \( \Delta e \) is small because \( \Delta n \) is small. The linear relationship between \( \Delta e \) and \( \Delta n \) means that if \( \Delta n = 2.8 \times 10^{-3} \), the value of \( \Delta e \) will indeed lie between 2.0 and 3.0 milliradians.
Therefore, statement (C) is correct: \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \).
Final Answer:
The correct options are:
- (B) \( \Delta e \) is proportional to \( \Delta n \)
- (C) \( \Delta e \) lies between 2.0 and 3.0 milliradians if \( \Delta n = 2.8 \times 10^{-3} \)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.