To determine the angular momentum of the sphere, we start by calculating the moment of inertia \( I \) for a solid sphere rotating about its diameter. The formula for \( I \) is:
\( I = \frac{2}{5} m r^2 \)
Given:
- Mass \( m = 50 \) kg
- Radius \( r = 20 \) cm = \( 0.2 \) m (convert to meters)
Substitute the values into the formula:
\( I = \frac{2}{5} \times 50 \times (0.2)^2 = \frac{2}{5} \times 50 \times 0.04 = \frac{2}{5} \times 2 = \frac{4}{5} \) kg·m²
\( I = 0.8 \) kg·m²
Next, convert the angular velocity from rpm (revolutions per minute) to rad/s (radians per second). Given angular velocity \(\omega = 420\) rpm:
- 1 revolution = \(2\pi\) radians
- 1 minute = 60 seconds
Convert \(\omega\):
\(\omega = 420 \times \frac{2\pi}{60} = 7 \times 2\pi = 14\pi\) rad/s
Finally, calculate the angular momentum \( L \) using the formula:
\( L = I \omega \)
Substitute \( I \) and \(\omega\):
\( L = 0.8 \times 14\pi = 11.2\pi \) kg·m²/s
Using \(\pi \approx 3.142\),
\[L = 11.2 \times 3.142 \approx 35.2 \mathrm{\ Js}\]
Therefore, the angular momentum of the sphere is 35.2 Js, which matches the correct option.