Step 1: Formula for Angular Momentum
The angular momentum \( L \) of a rotating body is given by:
\[
L = I \omega.
\]
where:
- \( I \) is the moment of inertia about the axis of rotation,
- \( \omega \) is the angular velocity in rad/s.
Step 2: Moment of Inertia of a Solid Sphere
For a solid sphere rotating about its diameter,
\[
I = \frac{2}{5} M R^2.
\]
Substituting the given values:
- \( M = 50 \) kg,
- \( R = 20 \) cm = \( 0.2 \) m.
\[
I = \frac{2}{5} \times 50 \times (0.2)^2.
\]
\[
I = \frac{2}{5} \times 50 \times 0.04.
\]
\[
I = \frac{2}{5} \times 2 = 0.8 { kg m}^2.
\]
Step 3: Angular Velocity Calculation
The given angular velocity is 420 rpm. Converting to rad/s:
\[
\omega = 420 \times \frac{2\pi}{60}.
\]
\[
\omega = 420 \times \frac{\pi}{30}.
\]
\[
\omega = 14\pi { rad/s}.
\]
Approximating \( \pi \approx 3.14 \):
\[
\omega = 14 \times 3.14 = 43.96 { rad/s}.
\]
Step 4: Calculating Angular Momentum
\[
L = I \omega = 0.8 \times 43.96.
\]
\[
L = 35.2 { Js}.
\]
Step 5: Conclusion
Thus, the angular momentum of the sphere is:
\[
35.2 { Js}.
\]