We need to find the ratio of the velocities of a solid sphere and a solid cylinder rolling down an inclined plane without slipping, starting from rest.
Step 1: Apply conservation of energy.
For both objects, potential energy at the top (\( mgh \)) converts to kinetic energy at the bottom (\( \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \)), where \( \omega = \frac{v}{r} \).
Step 2: Moment of inertia.
Solid sphere: \( I_{\text{sphere}} = \frac{2}{5}mr^2 \).
Solid cylinder: \( I_{\text{cylinder}} = \frac{1}{2}mr^2 \).
Step 3: Energy conservation for the sphere.
\[
m_{\text{sphere}} g h = \frac{1}{2} m_{\text{sphere}} v_{\text{sphere}}^2 + \frac{1}{2} I_{\text{sphere}} \left( \frac{v_{\text{sphere}}}{r} \right)^2
\]
\[
\frac{1}{2} m_{\text{sphere}} v_{\text{sphere}}^2 + \frac{1}{2} \left( \frac{2}{5} m_{\text{sphere}} r^2 \right) \left( \frac{v_{\text{sphere}}^2}{r^2} \right) = \frac{1}{2} m_{\text{sphere}} v_{\text{sphere}}^2 \left( 1 + \frac{2}{5} \right) = \frac{1}{2} m_{\text{sphere}} v_{\text{sphere}}^2 \cdot \frac{7}{5}
\]
\[
m_{\text{sphere}} g h = \frac{1}{2} m_{\text{sphere}} v_{\text{sphere}}^2 \cdot \frac{7}{5} \implies v_{\text{sphere}}^2 = \frac{10}{7} g h \implies v_{\text{sphere}} = \sqrt{\frac{10}{7} g h}
\]
Step 4: Energy conservation for the cylinder.
\[
m_{\text{cylinder}} g h = \frac{1}{2} m_{\text{cylinder}} v_{\text{cylinder}}^2 + \frac{1}{2} I_{\text{cylinder}} \left( \frac{v_{\text{cylinder}}}{r} \right)^2
\]
\[
\frac{1}{2} m_{\text{cylinder}} v_{\text{cylinder}}^2 + \frac{1}{2} \left( \frac{1}{2} m_{\text{cylinder}} r^2 \right) \left( \frac{v_{\text{cylinder}}^2}{r^2} \right) = \frac{1}{2} m_{\text{cylinder}} v_{\text{cylinder}}^2 \left( 1 + \frac{1}{2} \right) = \frac{1}{2} m_{\text{cylinder}} v_{\text{cylinder}}^2 \cdot \frac{3}{2}
\]
\[
m_{\text{cylinder}} g h = \frac{1}{2} m_{\text{cylinder}} v_{\text{cylinder}}^2 \cdot \frac{3}{2} \implies v_{\text{cylinder}}^2 = \frac{4}{3} g h \implies v_{\text{cylinder}} = \sqrt{\frac{4}{3} g h}
\]
Step 5: Compute the ratio of velocities.
\[
\frac{v_{\text{sphere}}}{v_{\text{cylinder}}} = \sqrt{\frac{\frac{10}{7} g h}{\frac{4}{3} g h}} = \sqrt{\frac{10}{7} \cdot \frac{3}{4}} = \sqrt{\frac{30}{28}} = \sqrt{\frac{15}{14}}
\]
Thus, the ratio \( v_{\text{sphere}} : v_{\text{cylinder}} = \sqrt{15} : \sqrt{14} \).
Final Answer:
\[
\boxed{\sqrt{15} : \sqrt{14}}
\]