We are given the following values:
Power (\(P\)) = 25 kW = 25,000 W,
Speed (\(N\)) = 540 rpm,
Shear stress (\(\tau_{{max}}\)) = 35 MPa = 35 \(\times 10^6\) Pa,
The maximum torque exceeds the mean torque by 20%.
Step 1: Calculate the mean torque (\(T_{{mean}}\))
Using the formula for power transmission:
\[
P = \frac{T_{{mean}} \times N \times 2\pi}{60}
\]
Rearranging to solve for \(T_{{mean}}\):
\[
T_{{mean}} = \frac{P \times 60}{N \times 2\pi} = \frac{25,000 \times 60}{540 \times 2\pi} = \frac{1,500,000}{3392.3} \approx 442.3 \, {Nm}
\]
Step 2: Calculate the maximum torque (\(T_{{max}}\))
Since the maximum torque exceeds the mean torque by 20%, the maximum torque is:
\[
T_{{max}} = 1.2 \times T_{{mean}} = 1.2 \times 442.3 = 530.76 \, {Nm}
\]
Step 3: Calculate the shaft diameter
The torque is related to the shaft diameter by the formula:
\[
T_{{max}} = \frac{\pi \times d^3 \times \tau_{{max}}}{16}
\]
Rearranging to solve for \(d\):
\[
d^3 = \frac{16 \times T_{{max}}}{\pi \times \tau_{{max}}}
\]
\[
d^3 = \frac{16 \times 530.76}{\pi \times 35 \times 10^6} = \frac{8481.6}{1.099 \times 10^8} \approx 7.71 \times 10^{-5}
\]
Now, taking the cube root to solve for \(d\):
\[
d = \sqrt[3]{7.71 \times 10^{-5}} \approx 0.0415 \, {m} = 41.50 \, {mm}
\]
Thus, the minimum shaft diameter is 41.50 mm.