Question:

A solid metallic cube having total surface area 24m2 24 \, m^2 is uniformly heated. If its temperature is increased by 10C 10^\circ C , calculate the increase in volume of the cube.
% Given: α=5.0×104C1 \alpha = 5.0 \times 10^{-4} \, C^{-1}

Show Hint

For thermal expansion in solids, volume change is calculated using ΔV=V0γΔT \Delta V = V_0 \gamma \Delta T , where γ=3α \gamma = 3\alpha .
Updated On: Mar 24, 2025
  • 2.4×106cm3 2.4 \times 10^6 \, cm^3
  • 1.2×105cm3 1.2 \times 10^5 \, cm^3
  • 6.0×104cm3 6.0 \times 10^4 \, cm^3
  • 4.8×105cm3 4.8 \times 10^5 \, cm^3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: {Formula for volume expansion}
ΔV=V0γΔT \Delta V = V_0 \gamma \Delta T Step 2: {Volume relation with side length}
ΔV=a3(3α)ΔT \Delta V = a^3 (3\alpha) \Delta T Step 3: {Finding cube side length}
6a2=24a2=4a=2 6a^2 = 24 \quad \Rightarrow \quad a^2 = 4 \quad \Rightarrow \quad a = 2 Step 4: {Substituting values}
ΔV=23(3×5×104)×10=1200×104m3 \Delta V = 2^3 (3 \times 5 \times 10^{-4}) \times 10 = 1200 \times 10^{-4} \, m^3 =1200×102cm3=1.2×105cm3 = 1200 \times 10^2 \, cm^3 = 1.2 \times 10^5 \, cm^3 Thus, the correct answer is 1.2×105cm3 1.2 \times 10^5 \, cm^3 .
Was this answer helpful?
0
0

Questions Asked in BITSAT exam

View More Questions