Step 1: Given total surface area of the cube is \( 24 \, m^2 \).
For a cube, total surface area = \( 6a^2 \), where \( a \) is the side length.
So, \( 6a^2 = 24 \Rightarrow a^2 = 4 \Rightarrow a = 2 \, m \)
Step 2: Volume of cube = \( a^3 = (2)^3 = 8 \, m^3 \)
Step 3: Use the formula for volumetric expansion:
\( \Delta V = 3\alpha V \Delta T \)
Given: \( \alpha = 5.0 \times 10^{-4} \, C^{-1} \), \( V = 8 \, m^3 \), \( \Delta T = 10^\circ C \)
Step 4: Substitute the values:
\( \Delta V = 3 \times 5.0 \times 10^{-4} \times 8 \times 10 = 0.12 \, m^3 \)
Step 5: Convert \( m^3 \) to \( cm^3 \):
\( 0.12 \, m^3 = 0.12 \times 10^6 = 1.2 \times 10^5 \, cm^3 \)
Final Answer: \( 1.2 \times 10^5 \, cm^3 \)