When the disc slides down from the height \( H \), all of its potential energy converts into kinetic energy at the horizontal section.
Using conservation of energy:
\[
\text{Initial potential energy at A} = m g H \\
\text{Kinetic energy at point B} = \frac{1}{2}mv^2 \Rightarrow m g H = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{2gH}
\]
When the disc moves off the edge at point C (height \( h \) above ground), it performs projectile motion.
Time of fall from height \( h \):
\[
t = \sqrt{\frac{2h}{g}}
\]
Horizontal distance covered (Range) from point D:
\[
R = v \cdot t = \sqrt{2gH} \cdot \sqrt{\frac{2h}{g}} = \sqrt{4Hh} = 2\sqrt{Hh}
\]
Now, from the figure, for the disc to reach a maximum horizontal distance of \( H \), we must have:
\[
2\sqrt{Hh} = H \Rightarrow \sqrt{Hh} = \frac{H}{2} \Rightarrow Hh = \frac{H^2}{4} \Rightarrow h = \frac{H}{4}
\]
Therefore, the correct answer (for this specific case) when height \( h = \frac{H}{4} \), the range \( R = H \).
Thus, the maximum horizontal distance is:
\[
\boxed{H}
\]