Using Poiseuille's law, the flow rate \(Q\) is given by:
\[
Q = \frac{\pi r^4 \Delta P}{8 \eta L}
\]
Where:
- \(r = 25 \, \mu m = 25 \times 10^{-6} \, \text{m}\) (radius)
- \(\Delta P = 1.3 \, \text{kPa} = 1.3 \times 10^3 \, \text{Pa}\) (pressure drop)
- \(\eta = 3 \, \text{Pa.s}\) (viscosity)
- \(L = 1.1 \, \text{mm} = 1.1 \times 10^{-3} \, \text{m}\) (length)
Substituting the values:
\[
Q = \frac{\pi (25 \times 10^{-6})^4 (1.3 \times 10^3)}{8 \times 3 \times 1.1 \times 10^{-3}} = 16 \times 10^{-16} \, \text{m}^3/\text{sec}
\]
Conclusion:
The flow rate is \(16 \times 10^{-16} \, \text{m}^3/\text{sec}\), so option (a) is correct.