Step 1: Recall the formula for Coriolis acceleration.
The Coriolis acceleration \( a_c \) is given by the formula:
\[
a_c = 2 v \omega,
\]
where \( v \) is the velocity of the slider relative to the rotating link, and \( \omega \) is the angular velocity of the rotating link.
Step 2: Convert the angular velocity from rpm to rad/s.
The angular velocity is given as 60 rpm (revolutions per minute). To convert it to rad/s (radians per second), we use the conversion factor \( \frac{2\pi \, \text{radians}}{1 \, \text{revolution}} \) and \( \frac{1 \, \text{minute}}{60 \, \text{seconds}} \):
\[
\omega = 60 \, \frac{\text{rev}}{\text{min}} \times \frac{2\pi \, \text{rad}}{1 \, \text{rev}} \times \frac{1 \, \text{min}}{60 \, \text{s}} = 2\pi \, \text{rad/s}.
\]
Step 3: Identify the velocity of the slider.
The velocity of the slider relative to the rotating link is given as \( v = 100 \, \text{mm/s} \).
Step 4: Substitute the values into the Coriolis acceleration formula.
\[
a_c = 2 v \omega = 2 \times (100 \, \text{mm/s}) \times (2\pi \, \text{rad/s}).
\]
Step 5: Calculate the magnitude of the Coriolis acceleration.
\[
a_c = 400 \pi \, \text{mm/s}^2.
\]
Step 6: Select the correct answer.
The magnitude of the Coriolis acceleration is \( 400 \pi \, \text{mm/s}^2 \), which corresponds to option 3.