A freely-floating rectangular barge of length 200 m is divided into five equal compartments. In light-weight condition, the weight and buoyancy are uniformly distributed along the length of the barge. Assume \( g = 9.81 \, {m/s}^2 \). If 500 tonne of liquid cargo is added to each of the two end compartments as shown in the figure, then the maximum bending moment is {98.10 MN·m (rounded off to two decimal places).
The beam PQRS is subjected to a vertical point load of \(10\) kN at point S as shown in the figure. The magnitude of fixed end moment at P is _________ kN‑m.
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).
A multi-cell midship section of a ship with \( B = 40 \, {m} \) and \( D = 20 \, {m} \) is shown in the figure. The shear-flows are given as \( q_1 = q_2 = q_3 = 0.9376 \, {MN/m} \). The applied twisting moment on the midship section is ___________ MN·m (rounded off to two decimal places).
Consider a weightless, frictionless piston with a 2 kg mass placed on it as shown in the figure. At equilibrium in position 1, the cylinder contains 0.1 kg of air. The piston cross-sectional area is 0.01 m2. The ambient pressure in the surroundings outside the piston-cylinder arrangement is 0 bar (absolute). When the mass above the piston is removed instantaneously, it moves up and hits the stop at position 2, which is 0.1 m above the initial position.
Assuming \( g = 9.81 \, {m/s}^2 \), the thermodynamic work done by the system during this process is ________ J (answer in integer).