A freely-floating rectangular barge of length 200 m is divided into five equal compartments. In light-weight condition, the weight and buoyancy are uniformly distributed along the length of the barge. Assume \( g = 9.81 \, {m/s}^2 \). If 500 tonne of liquid cargo is added to each of the two end compartments as shown in the figure, then the maximum bending moment is {98.10 MN·m (rounded off to two decimal places).
A freely-floating rectangular barge of length 200 m is divided into five equal compartments. In light-weight condition, the weight and buoyancy are uniformly distributed along the length of the barge. Assume \( g = 9.81 \, {m/s}^2 \). If 500 tonne of liquid cargo is added to each of the two end compartments as shown in the figure, then the maximum bending moment is {98.10 MN·m (rounded off to two decimal places).

The beam PQRS is subjected to a vertical point load of \(10\) kN at point S as shown in the figure. The magnitude of fixed end moment at P is _________ kN‑m.

An ideal monoatomic gas is contained inside a cylinder-piston assembly connected to a Hookean spring as shown in the figure. The piston is frictionless and massless. The spring constant is 10 kN/m. At the initial equilibrium state (shown in the figure), the spring is unstretched. The gas is expanded reversibly by adding 362.5 J of heat. At the final equilibrium state, the piston presses against the stoppers. Neglecting the heat loss to the surroundings, the final equilibrium temperature of the gas is __________ K (rounded off to the nearest integer).
The residence-time distribution (RTD) function of a reactor (in min$^{-1}$) is 
The mean residence time of the reactor is __________ min (rounded off to 2 decimal places).}
Ideal nonreacting gases A and B are contained inside a perfectly insulated chamber, separated by a thin partition, as shown in the figure. The partition is removed, and the two gases mix till final equilibrium is reached. The change in total entropy for the process is _________J/K (rounded off to 1 decimal place).
Given: Universal gas constant \( R = 8.314 \) J/(mol K), \( T_A = T_B = 273 \) K, \( P_A = P_B = 1 \) atm, \( V_B = 22.4 \) L, \( V_A = 3V_B \).
The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:
\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is __________ MPa (rounded off to 3 decimal places).