Question:

A set of measurements of a certain parameter is: $20.00,\; 19.75,\; 18.25,\; 17.01$. Find the relative error for the set of measurements.

Show Hint

For numerical problems on errors, always calculate mean first, then mean absolute error, and finally divide by the mean to get relative error.
Updated On: Jan 23, 2026
  • $0.12$
  • $0.06$
  • $0.09$
  • $0.17$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Concept: For repeated measurements:
Mean value $=\dfrac{\text{sum of observations}}{\text{number of observations}}$
Mean absolute error $=\dfrac{\sum |x_i-\bar{x}|}{n}$
Relative error $=\dfrac{\text{Mean absolute error}}{\bar{x}}$
Step 1: Calculate the mean value \[ \bar{x}=\frac{20.00+19.75+18.25+17.01}{4} =\frac{75.01}{4} =18.75 \]
Step 2: Find absolute errors \[ |20.00-18.75|=1.25 \] \[ |19.75-18.75|=1.00 \] \[ |18.25-18.75|=0.50 \] \[ |17.01-18.75|=1.74 \]
Step 3: Mean absolute error \[ \Delta x=\frac{1.25+1.00+0.50+1.74}{4} =\frac{4.49}{4} \approx1.12 \] Step 4: Relative error \[ \text{Relative error}=\frac{\Delta x}{\bar{x}} =\frac{1.12}{18.75} \approx0.06 \]
Step 5: Hence, the relative error for the given set of measurements is: \[ \boxed{0.06} \]
Was this answer helpful?
0
0

Top Questions on Error Analysis

View More Questions