Step 1: Use the formula for the orbital speed of a satellite
The orbital speed \( v \) of a satellite orbiting at a height \( h \) above the Earth's surface is given by:
\[
v = \sqrt{\frac{GM}{r}}
\]
where:
- \( G \) is the gravitational constant,
- \( M \) is the mass of the Earth,
- \( r \) is the distance from the center of the Earth to the satellite, which is \( r = R + h \), where \( R \) is the radius of the Earth.
Step 2: Substitute the given values
Given:
- \( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \),
- \( M = 6 \times 10^{24} \, \text{kg} \),
- Radius of the Earth \( R = 6.4 \times 10^6 \, \text{m} \),
- Height of the satellite \( h = 10^4 \, \text{km} = 10^7 \, \text{m} \).
The total distance from the center of the Earth to the satellite is:
\[
r = 6.4 \times 10^6 + 10^7 = 1.64 \times 10^7 \, \text{m}
\]
Now, substitute these values into the orbital speed formula:
\[
v = \sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{1.64 \times 10^7}}
\]
\[
v = \sqrt{\frac{4.002 \times 10^{14}}{1.64 \times 10^7}} = \sqrt{2.44 \times 10^7} = 4.93 \times 10^3 \, \text{m/s} = 7.0 \, \text{km/s}
\]
Answer: Therefore, the orbital speed of the satellite is \( 7.0 \, \text{km/s} \). So, the correct answer is option (1).