Step 1: Identify the variables.
\begin{itemize}
Initial mass of the rocket (\( m_0 \)) = 6000 kg.
Rate of mass ejection (\( \dot{m} \)) = 16 kg/s.
Relative speed of ejected gases (\( v_r \)) = 11 km/s = 11000 m/s.
Time (\( t \)) = 1 minute = 60 seconds.
\end{itemize}
Step 2: Calculate the mass of the rocket after 1 minute.
The mass decreases at a constant rate:
\[
m = m_0 - (\dot{m} \cdot t).
\]
Substitute the values:
\[
m = 6000 - (16 \cdot 60) = 6000 - 960 = 5040 \, \mathrm{kg}.
\]
Step 3: Use the rocket equation to find acceleration.
The acceleration of the rocket is given by:
\[
a = \frac{\dot{m} \cdot v_r}{m}.
\]
Substitute the known values:
\[
a = \frac{16 \cdot 11000}{5040}.
\]
Simplify:
\[
a = \frac{176000}{5040} = 34.92 \, \mathrm{m/s^2}.
\]
Thus, the acceleration of the rocket after 1 minute is \( 34.92 \, \mathrm{m/s^2} \).