Step 1: Write Archie's law for fully saturated rock.
For brine-saturated clean formations:
\[
\rho=a\,\rho_w\,\phi^{-m} \quad \Rightarrow \quad
\frac{\rho}{\rho_w}=a\,\phi^{-m}.
\]
Given \(a=1,\ m=2\),
\[
\phi^{-2}=\frac{\rho}{\rho_w}\quad\Rightarrow\quad
\phi=\left(\frac{\rho_w}{\rho}\right)^{1/2}.
\]
Step 2: Insert numbers and keep significant figures.
\[
\phi=\sqrt{\frac{0.25}{60}}
=\sqrt{0.0041666667}
=0.064549722\ldots
\]
Convert to percentage:
\[
\phi(%)=0.064549722\times100=6.4549722%.
\]
Step 3: Round and sanity-check.
- Rounded to two decimals: \(6.45%\).
- Check: Higher rock resistivity relative to water implies low porosity (current path restricted) — value \(6.45%\) is physically reasonable for a tight rock.
Final Answer:\ \(\boxed{6.45%}\)
