Step 1: Understanding kinetic energy in rolling motion
The total kinetic energy of a rolling body consists of translational and rotational kinetic energy. It is given by:
\[
KE = KE_{\text{translational}} + KE_{\text{rotational}}
\]
For a rolling body, we use:
\[
KE = \frac{1}{2} M v^2 + \frac{1}{2} I \omega^2
\]
where \( M \) is the mass, \( v \) is the linear velocity, \( I \) is the moment of inertia, and \( \omega \) is the angular velocity. Since rolling without slipping implies \( v = R\omega \), we substitute \( \omega = \frac{v}{R} \).
Step 2: Kinetic energy for a ring
The moment of inertia of a ring about its central axis is:
\[
I_{\text{ring}} = MR^2
\]
\[
KE_{\text{ring}} = \frac{1}{2} M v^2 + \frac{1}{2} M R^2 \left(\frac{v^2}{R^2}\right)
\]
\[
KE_{\text{ring}} = \frac{1}{2} M v^2 + \frac{1}{2} M v^2 = M v^2
\]
Step 3: Kinetic energy for a disc
The moment of inertia of a disc about its central axis is:
\[
I_{\text{disc}} = \frac{1}{2} M R^2
\]
\[
KE_{\text{disc}} = \frac{1}{2} M v^2 + \frac{1}{2} \left(\frac{1}{2} M R^2\right) \left(\frac{v^2}{R^2}\right)
\]
\[
KE_{\text{disc}} = \frac{1}{2} M v^2 + \frac{1}{4} M v^2 = \frac{3}{4} M v^2
\]
Step 4: Ratio of kinetic energies
The ratio of the kinetic energy of the ring to the disc is:
\[
\frac{KE_{\text{ring}}}{KE_{\text{disc}}} = \frac{M v^2}{\frac{3}{4} M v^2} = \frac{4}{3} = 1.33
\]
Thus, the ratio of their kinetic energy is:
\[
\mathbf{1.33}
\]