Step 1: Initial specific volume.
\[
v = \frac{V}{m} = \frac{2}{5} = 0.4 \, m^3/kg
\]
Step 2: Initial quality $x_1$.
\[
v = v_f + x_1 v_{fg}
\]
\[
0.4 = 0.001084 + x_1 (0.46138)
\]
\[
x_1 = \frac{0.3989}{0.46138} \approx 0.865
\]
Step 3: Mass of saturated liquid initially.
\[
m_f = (1-x_1) m = (1-0.865)(5) = 0.675 \, kg
\]
Half drained:
\[
m_{f,new} = 0.3375 \, kg
\]
Step 4: Mass of vapor initially.
\[
m_g = x_1 m = 0.865 \times 5 = 4.325 \, kg
\]
No vapor drained.
Step 5: New total mass.
\[
m_{new} = m_g + m_{f,new} = 4.325 + 0.3375 = 4.6625 \, kg
\]
Step 6: New specific volume.
\[
v_{new} = \frac{2}{4.6625} = 0.429 \, m^3/kg
\]
Step 7: Final quality.
\[
v_{new} = v_f + x_2 v_{fg}
\]
\[
0.429 = 0.001084 + x_2 (0.46138)
\]
\[
x_2 = \frac{0.4279}{0.46138} \approx 0.927
\]
Rounded to two decimal places: $x_2 = 0.93$.
Final Answer:
\[
\boxed{0.93}
\]
% Quicktip