When right-angled \(∆ABC\) is revolved about its side 12 cm, a cone with height (h) as 12 cm, radius (r) as 5 cm, and slant height (\(l\)) 13 cm will be formed.

Volume of cone= \(\frac{1}{3}\pi\)r²h
= \(\frac{1}{3}\) × \(\pi\) × 5 cm × 5 cm × 12 cm
= 100\(\pi\) cm³
Volume of the cone is 100\(\pi\) cm³
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
