Derivation of Impedance
The total voltage in a series R-C circuit is given by: \[ v = v_R + v_C, \] where: $v_R = i R$ is the voltage across the resistor, $v_C = i \frac{1}{j\omega C}$ is the voltage across the capacitor. The current in the circuit is the same through all components, and the impedance $Z$ of the circuit is given by: \[ Z = \frac{v}{i}. \] The impedance of the resistor is purely real, $Z_R = R$, and the impedance of the capacitor is purely imaginary, $Z_C = -j\frac{1}{\omega C}$. The total impedance is: \[ Z = Z_R + Z_C = R - j\frac{1}{\omega C}. \] The magnitude of the impedance is: \[ |Z| = \sqrt{\text{Re}(Z)^2 + \text{Im}(Z)^2}. \] Substituting the real and imaginary parts: \[ |Z| = \sqrt{R^2 + \left(-\frac{1}{\omega C}\right)^2} = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}. \] Thus, the impedance of the circuit is: \[ Z = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}. \]
In the given reaction sequence, the structure of Y would be:
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |