A small point of mass is placed at a distance from the center of a big uniform solid sphere of mass and radius . The gravitational force on due to is . A spherical part of radius is removed from the big sphere as shown in the figure, and the gravitational force on due to the remaining part of is found to be . The value of the ratio is:
The height from Earth's surface at which acceleration due to gravity becomes is ? (Where is the acceleration due to gravity on the surface of the Earth and is the radius of the Earth.)
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].