Step 1: Write the formula for maximum power in a waveguide for TE10 mode.
The maximum power (\(P_{max}\)) that a rectangular waveguide can handle is determined by the maximum electric field (\(E_{max}\), or potential gradient) the dielectric inside can withstand before breakdown. For the TE10 mode, the formula is:
\[ P_{max} = \frac{a \cdot b}{4 \eta_g} E_{max}^2 \]
where \(a\) is the wide dimension, \(b\) is the narrow dimension, and \(\eta_g\) is the wave impedance in the guide.
Step 2: Calculate the wave impedance \(\eta_g\).
The wave impedance is given by:
\[ \eta_g = \frac{\eta_0}{\sqrt{1 - (f_c/f)^2}} \]
where \(\eta_0\) is the impedance of free space (\(\approx 377 \, \Omega\)), \(f\) is the operating frequency, and \(f_c\) is the cutoff frequency.
Given: \(f = 11\) GHz, \(f_c = 6.55\) GHz.
\[ \eta_g = \frac{377}{\sqrt{1 - (6.55/11)^2}} = \frac{377}{\sqrt{1 - (0.595)^2}} = \frac{377}{\sqrt{1 - 0.354}} = \frac{377}{\sqrt{0.646}} \approx \frac{377}{0.804} \approx 469 \, \Omega \]
Step 3: Convert given dimensions and fields to SI units.
\( a = 2.29 \text{ cm} = 0.0229 \text{ m} \)
\( b = 1.02 \text{ cm} = 0.0102 \text{ m} \)
\( E_{max} = 5 \text{ kV/cm} = 5 \times 10^3 \text{ V/cm} = 5 \times 10^5 \text{ V/m} \)
Step 4: Calculate the maximum power.
\[ P_{max} = \frac{(0.0229)(0.0102)}{4 \times 469} (5 \times 10^5)^2 \]
\[ P_{max} = \frac{2.3358 \times 10^{-4}}{1876} (25 \times 10^{10}) \]
\[ P_{max} \approx (1.245 \times 10^{-7}) \times (25 \times 10^{10}) = 3.1125 \times 10^4 \text{ W} \]
\[ P_{max} \approx 31.125 \text{ kW} \]
This matches option (C).