Let the equation of the circle be $x^{2}+y^{2}+2gx+2fy+c = 0 $
and let the rect. hyperbola be $xy = 1$
$ \Rightarrow y =\frac{1}{x}$
Putting in the equation of the circle
$x^{2}+\frac{1}{x^{2}}+2gx+\frac{2fy}{x}+c = 0$
$ \Rightarrow x^{4}+2gx^{3}+cx^{2}+2fx+1=0$
this is fourth degree equation in $x $ giving four values of $x$ say $x_{1}, x_{2}, x_{3}, x_{4}$
$\therefore\Sigma x_{1} = -2g $
$ \Sigma x_{1}x_{2} = c$
$\therefore \Sigma x_{1}^{2} = \left(\Sigma x_{1}\right)^{2} -2 \Sigma x_{1}x_{2} = 4g^{2} -2c $
Equation whose roots are reciprocals of the roots of $\left(1\right)$is
$y^{4}+2fy^{3}+cy^{2}+2gy+1 = 0 $
If $y_{1}, y_{2}, y_{3}, y_{4}$ are it's roots then
$ \Sigma y_{1}^{2} = \left( \Sigma y_{1}\right)^{2} -2 \Sigma y_{1}y_{2} = 4f^{2} - 2c$
Now
$ CP^{2} +CQ^{2}+CR^{2}+CS^{2} $
$= x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+y_{1}^{2}+y_{2}^{2} +y_{3}^{2}+y_{4}^{2}$
$\left( {\text{where}}\,\, x_{1}y_{1} = 1 \,\,{\text{etc}}. \right)$
$ = 4g^{2}-2c+4f^{2}-2c $
$4\left(g^{2}+f^{2}-c\right) = 4r^{2}$