Question:

A ray of light travelling through a medium of refractive index $ \frac{5}{4} $ is incident on a glass of refractive index $ \frac{3}{2} $. Find the angle of refraction in the glass, if the angle of incidence at the given medium - glass interface is 30°

Show Hint

Always use Snell's law to find the angle of refraction when light passes from one medium to another. Ensure to use the correct refractive indices for the media involved.
Updated On: Apr 17, 2025
  • \( \sin^{-1} \left( \frac{1}{2} \right) \)
  • \( \sin^{-1} \left( \frac{1}{3} \right) \)
  • \( \sin^{-1} \left( \frac{5}{12} \right) \)
  • \( \sin^{-1} \left( \frac{6}{5} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using Snell's Law: \[ n_1 \sin \theta_1 = n_2 \sin \theta_2 \] where \( n_1 = \frac{5}{4} \), \( n_2 = \frac{3}{2} \), and \( \theta_1 = 30^\circ \). Substitute the known values: \[ \frac{5}{4} \sin 30^\circ = \frac{3}{2} \sin \theta_2 \] Since \( \sin 30^\circ = \frac{1}{2} \), we get: \[ \frac{5}{4} \times \frac{1}{2} = \frac{3}{2} \sin \theta_2 \] \[ \frac{5}{8} = \frac{3}{2} \sin \theta_2 \] \[ \sin \theta_2 = \frac{5}{8} \times \frac{2}{3} = \frac{5}{12} \] Now, \( \theta_2 = \sin^{-1} \left( \frac{5}{12} \right) \). Thus, the angle of refraction is \( \sin^{-1} \left( \frac{5}{12} \right) \), which corresponds to option (C).
Was this answer helpful?
0
0