Using Snell's Law:
\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]
where \( n_1 = \frac{5}{4} \), \( n_2 = \frac{3}{2} \), and \( \theta_1 = 30^\circ \).
Substitute the known values:
\[
\frac{5}{4} \sin 30^\circ = \frac{3}{2} \sin \theta_2
\]
Since \( \sin 30^\circ = \frac{1}{2} \), we get:
\[
\frac{5}{4} \times \frac{1}{2} = \frac{3}{2} \sin \theta_2
\]
\[
\frac{5}{8} = \frac{3}{2} \sin \theta_2
\]
\[
\sin \theta_2 = \frac{5}{8} \times \frac{2}{3} = \frac{5}{12}
\]
Now, \( \theta_2 = \sin^{-1} \left( \frac{5}{12} \right) \).
Thus, the angle of refraction is \( \sin^{-1} \left( \frac{5}{12} \right) \), which corresponds to option (C).