Step 1: Find the reflection point Q The ray reflects at point Q on the x-axis. Let the coordinates of Q be \((a, 0)\). Since the ray is reflected, Q lies on the x-axis, and the slope of \(PQ\) is equal to the negative of the slope of \(QR\).
The slope of \(PQ\) is: \[ \text{slope of } PQ = \frac{2 - 0}{1 - a} = \frac{2}{1 - a}. \]
The slope of \(QR\) is: \[ \text{slope of } QR = \frac{3 - 0}{4 - a} = \frac{3}{4 - a}. \]
By the law of reflection: \[ \frac{2}{1 - a} = -\frac{3}{4 - a}. \]
Cross-multiply to solve for \(a\): \[ 2(4 - a) = -3(1 - a). \] \[ 8 - 2a = -3 + 3a. \] \[ 8 + 3 = 5a. \] \[ a = \frac{11}{5}. \]
Thus, \(Q\) is \(\left(\frac{11}{5}, 0\right)\).
Step 2: Find the coordinates of \(S\) The points \(P(1, 2)\), \(Q \left(\frac{11}{5}, 0\right)\), \(R(4, 3)\), and \(S(h, k)\) form a parallelogram. The diagonals of a parallelogram bisect each other, so the midpoint of \(PR\) must equal the midpoint of \(QS\).
The midpoint of \(PR\) is: \[ \text{Midpoint of } PR = \left(\frac{1 + 4}{2}, \frac{2 + 3}{2}\right) = \left(\frac{5}{2}, \frac{5}{2}\right). \]
The midpoint of \(QS\) is: \[ \text{Midpoint of } QS = \left(\frac{\frac{11}{5} + h}{2}, \frac{0 + k}{2}\right). \]
Equating the midpoints: \[ \frac{\frac{11}{5} + h}{2} = \frac{5}{2}, \quad \frac{k}{2} = \frac{5}{2}. \]
Solve for \(h\) and \(k\): \[ \frac{11}{5} + h = 5 \implies h = 5 - \frac{11}{5} = \frac{25}{5} - \frac{11}{5} = \frac{14}{5}. \] \[ \frac{k}{2} = \frac{5}{2} \implies k = 5. \]
Thus, \(S\) is \(\left(\frac{14}{5}, 5\right)\).
Step 3: Calculate \(hk^2\) \[ hk^2 = \left(\frac{14}{5}\right)(5^2) = \frac{14}{5}(25) = 70. \]
Final Answer: Option (4).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: