The formula for radioactive decay relating initial quantity ($M_0$), final quantity ($M_t$), half-life ($T_{1/2}$), and time elapsed ($t=N$ years) is:
$M_t = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$.
Given values:
Initial mass $M_0 = 1 \text{ kg} = 1000 \text{ g}$.
Final mass $M_t = 125 \text{ g}$.
Half-life $T_{1/2} = 12.5 \text{ years}$.
Time elapsed $t = N$ years. We need to find $N$.
Substitute the values into the decay formula:
$125 \text{ g} = 1000 \text{ g} \left(\frac{1}{2}\right)^{\frac{N}{12.5}}$.
Divide by 1000 g:
$\frac{125}{1000} = \left(\frac{1}{2}\right)^{\frac{N}{12.5}}$.
Simplify the fraction $\frac{125}{1000}$:
$\frac{125}{1000} = \frac{1 \times 125}{8 \times 125} = \frac{1}{8}$.
So, $\frac{1}{8} = \left(\frac{1}{2}\right)^{\frac{N}{12.5}}$.
We know that $\frac{1}{8} = \left(\frac{1}{2}\right)^3$.
Therefore, $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{\frac{N}{12.5}}$.
Equating the exponents:
$3 = \frac{N}{12.5}$.
Now, solve for $N$:
$N = 3 \times 12.5 \text{ years}$.
$N = 37.5 \text{ years}$.
This means that after $37.5$ years, the element is left with 125 g.
This matches option (a).
\[ \boxed{37.5 \text{ years}} \]