The difference in energy levels of an electron at two excited levels is 13.75 eV. If it makes a transition from the higher energy level to the lower energy level then what will be the wavelength of the emitted radiation?
Given:
$ h = 6.6 \times 10^{-34} \, \text{m}^2 \, \text{kg} \, \text{s}^{-1} $, $ c = 3 \times 10^8 \, \text{ms}^{-1} $, $ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} $
Evolution is a process that occurs in changes in the genetic content of a population over time. Evolutionary change is generally classified into two: microevolution and macroevolution. The process of changes in allele frequencies in a population over time is a microevolutionary process. Three main mechanisms that cause allele frequency change are natural selection, genetic drift, and gene flow. On the other hand, macroevolution refers to change at or above the level of the species.