While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \]

The mean of the posterior distribution is (Answer in integer)