A periodic function \( f(x) \), with period 2, is defined as \[ f(x) = \begin{cases} -1 - x & \text{for } -1 \leq x&t;0 \\ 1 - x & \text{for } 0 \leq x \leq 1 \end{cases} \] The Fourier series of this function contains _________
The following function is defined over the interval \([-L, L]\): \[ f(x) = px^4 + qx^5 \] If it is expressed as a Fourier series, \[ f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \sin \left( \frac{n \pi x}{L} \right) + b_n \cos \left( \frac{n \pi x}{L} \right) \right), \] which options amongst the following are true?

