To find the power factor of the circuit, we need to calculate the impedance of the circuit and the phase angle. First, calculate the reactance of the capacitor and inductor.
The reactance of the capacitor \( X_C \) is given by:
\[
X_C = \frac{1}{2 \pi f C} = \frac{1}{2 \pi (50) \left( \frac{1000}{\pi} \times 10^{-6} \right)} \approx 3.18 \, \Omega.
\]
The reactance of the inductor \( X_L \) is given by:
\[
X_L = 2 \pi f L = 2 \pi (50) \left( \frac{20}{\pi} \times 10^{-3} \right) = 6.28 \, \Omega.
\]
Now, the total impedance \( Z \) is:
\[
Z = \sqrt{(R_1 + R_2)^2 + (X_L - X_C)^2} = \sqrt{(20 + 4)^2 + (6.28 - 3.18)^2} \approx 24.25 \, \Omega.
\]
The phase angle \( \theta \) is:
\[
\theta = \tan^{-1}\left( \frac{X_L - X_C}{R_1 + R_2} \right) = \tan^{-1}\left( \frac{6.28 - 3.18}{20 + 4} \right) \approx 7.2^\circ.
\]
The power factor \( \text{PF} \) is:
\[
\text{PF} = \cos(\theta) = \cos(7.2^\circ) \approx 0.99.
\]
Thus, the power factor is approximately \( 0.8 \).