The kinetic energy \( K \) of a particle is given by: \[ K = \frac{1}{2} m v^2, \] where \( v \) is the velocity of the particle. The velocity is the derivative of the displacement \( x(t) \) with respect to time: \[ v(t) = \frac{d}{dt} \left( x_0 \sin^2 \left( \frac{\pi t}{T} \right) \right) = 2x_0 \sin \left( \frac{\pi t}{T} \right) \cos \left( \frac{\pi t}{T} \right) \frac{\pi}{T}. \] Thus, the velocity is proportional to \( \sin \left( \frac{\pi t}{T} \right) \), and the kinetic energy is proportional to the square of the velocity, which results in a graph where the kinetic energy increases as the particle moves from the origin to its maximum displacement and decreases symmetrically thereafter.
Final Answer: Graph 1.
The logic gate equivalent to the circuit given in the figure is
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: