



The kinetic energy \( K \) of a particle is given by: \[ K = \frac{1}{2} m v^2, \] where \( v \) is the velocity of the particle. The velocity is the derivative of the displacement \( x(t) \) with respect to time: \[ v(t) = \frac{d}{dt} \left( x_0 \sin^2 \left( \frac{\pi t}{T} \right) \right) = 2x_0 \sin \left( \frac{\pi t}{T} \right) \cos \left( \frac{\pi t}{T} \right) \frac{\pi}{T}. \] Thus, the velocity is proportional to \( \sin \left( \frac{\pi t}{T} \right) \), and the kinetic energy is proportional to the square of the velocity, which results in a graph where the kinetic energy increases as the particle moves from the origin to its maximum displacement and decreases symmetrically thereafter.
Final Answer: Graph 1.



Which of the following circuits has the same output as that of the given circuit?

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 