Question:

A particle of mass $m$ is moving in the potential 
\[ V(x) = \begin{cases} V_0 + \frac{1}{2} m \omega_{0P}^2 x^2 & \quad \text{if } x > 0 \\ \infty & \quad \text{if } x \leq 0 \end{cases} \] 
Figures P, Q, R, and S show different combinations of the values of $ \omega_0 $ and $ V_0 $.

Updated On: Apr 5, 2025
  • \( E^{(P)}_0 = E^{(Q)}_0 \)
  • \( E^{(Q)}_0 = E^{(S)}_0 \)
  • \( E^{(P)}_0 = E^{(R)}_0 \)
  • \( E^{(R)}_0 \neq E^{(Q)}_0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B, C, D

Solution and Explanation

The correct Answers are (B):\( E^{(Q)}_0 = E^{(S)}_0 \),(C):\( E^{(P)}_0 = E^{(R)}_0 \),(D):\( E^{(R)}_0 \neq E^{(Q)}_0 \)
Was this answer helpful?
0
3

Questions Asked in GATE PH exam

View More Questions