The correct option is(A): \(M \, n^2 R^2 t\)
\(\frac{V^{2}}{R}=n^{2}\, R t^{2}\)
\(\Rightarrow V^{2}=n^{2}\, R^{2}\, t^{2}\)
\(\Rightarrow V=n R t\)
\(\Rightarrow \frac{d V}{d t}=n R\)
\(P=F_{t} V\)
\(=\frac{m d V}{d t} V\)
\(=m n R .n R t\)
\(P=n^{2}\, R^{2}\, t\, m\)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
Read More: Work and Energy