Step 1: Use SHM potential energy formula
Potential energy for SHM is:
\[
V(x) = \frac{1}{2} k x^2.
\]
Given \( V(x) = a + bx^2 \), comparing with the standard equation, we get:
\[
b = \frac{1}{2} k.
\]
Step 2: Compute \( k \) using angular frequency
The angular frequency is:
\[
\omega = \sqrt{\frac{k}{m}}.
\]
Squaring both sides:
\[
k = m \omega^2.
\]
Substituting \( m = 4 \times 10^{-6} \) kg and \( \omega = 40 \) rad/s,
\[
k = (4 \times 10^{-6}) (40)^2.
\]
\[
k = 6.4 \times 10^{-3} \text{ N/m}.
\]
Step 3: Compute \( b \)
\[
b = \frac{1}{2} \times 6.4 \times 10^{-3} = 3.2 \times 10^{-3} = 3200 \times 10^{-6} \text{ J/m}^2.
\]
Thus, the correct answer is \( 3200 \times 10^{-6} \) J/m\(^2\).