Centripetal force is provided by magnetic Lorentz force:
\[
\frac{mv^2}{r} = qvB \Rightarrow B = \frac{mv}{qr}
\]
Given:
- \( m = 2.2 \times 10^{-30} \, \text{kg} \)
- \( v = 10^4 \, \text{m/s} \)
- \( q = 1.6 \times 10^{-19} \, \text{C} \)
- \( r = 2.8 \, \text{cm} = 2.8 \times 10^{-2} \, \text{m} \)
\[
B = \frac{2.2 \times 10^{-30} \cdot 10^4}{1.6 \times 10^{-19} \cdot 2.8 \times 10^{-2}} \approx 4.91 \times 10^{-5}\, \text{T}
\]
Magnetic field inside solenoid:
\[
B = \mu_0 n I \Rightarrow I = \frac{B}{\mu_0 n}
\]
Convert \( n = 25\, \text{turns/cm} = 2500\, \text{turns/m} \)
\[
I = \frac{4.91 \times 10^{-5}}{4\pi \times 10^{-7} \cdot 2500} \approx 1.56 \times 10^{-3} = 1.56\, \text{mA}
\]