Given:
Initial velocity of the particle, \( u = 2 v_e \), where \( v_e \) is the escape velocity.
Step 1: Recall the escape velocity formula:
\[
v_e = \sqrt{\frac{2GM}{R}}
\]
where \( G \) is the gravitational constant, \( M \) is the mass of the Earth, and \( R \) is the radius of the Earth.
Step 2: Use conservation of energy. The total mechanical energy at the surface:
\[
E_i = \frac{1}{2} m u^2 - \frac{GMm}{R}
\]
At a very large distance, the potential energy is zero and the particle will have speed \( v \), so:
\[
E_f = \frac{1}{2} m v^2
\]
Conservation of energy implies:
\[
E_i = E_f
\]
\[
\frac{1}{2} m u^2 - \frac{GMm}{R} = \frac{1}{2} m v^2
\]
Step 3: Substitute \( u = 2 v_e \) and \( v_e^2 = \frac{2GM}{R} \):
\[
\frac{1}{2} m (2 v_e)^2 - \frac{GM m}{R} = \frac{1}{2} m v^2
\]
\[
\frac{1}{2} m 4 v_e^2 - \frac{1}{2} m v_e^2 = \frac{1}{2} m v^2
\]
\[
2 m v_e^2 - m v_e^2 = \frac{1}{2} m v^2
\]
\[
m v_e^2 = \frac{1}{2} m v^2
\]
Step 4: Cancel \( m \) and multiply both sides by 2:
\[
2 v_e^2 = v^2
\]
\[
v = \sqrt{2} v_e
\]
Step 5: Check carefully; the above simplification missed subtracting potential energy properly.
Recalculate Step 3 precisely:
\[
\frac{1}{2} m u^2 - \frac{GM m}{R} = \frac{1}{2} m v^2
\]
\[
\frac{1}{2} m (2 v_e)^2 - \frac{GM m}{R} = \frac{1}{2} m v^2
\]
\[
\frac{1}{2} m 4 v_e^2 - \frac{1}{2} m v_e^2 = \frac{1}{2} m v^2
\]
Because \( v_e^2 = \frac{2GM}{R} \), so potential energy \( -\frac{GM m}{R} = -\frac{1}{2} m v_e^2 \) (correcting the previous step).
Step 6: Substitute:
\[
2 m v_e^2 - \frac{1}{2} m v_e^2 = \frac{1}{2} m v^2
\]
\[
\left(2 - \frac{1}{2}\right) m v_e^2 = \frac{1}{2} m v^2
\]
\[
\frac{3}{2} m v_e^2 = \frac{1}{2} m v^2
\]
Cancel \( \frac{1}{2} m \) from both sides:
\[
3 v_e^2 = v^2
\]
\[
v = \sqrt{3} v_e
\]
Therefore, the speed of the particle far from the Earth is:
\[
\boxed{ \sqrt{3} v_e }
\]