The Correct option is (A): \(\frac{8}{9}\)
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Simple Harmonic Motion is one of the most simple forms of oscillatory motion that occurs frequently in nature. The quantity of force acting on a particle in SHM is exactly proportional to the displacement of the particle from the equilibrium location. It is given by F = -kx, where k is the force constant and the negative sign indicates that force resists growth in x.
This force is known as the restoring force, and it pulls the particle back to its equilibrium position as opposing displacement increases. N/m is the SI unit of Force.
When a particle moves to and fro about a fixed point (called equilibrium position) along with a straight line then its motion is called linear Simple Harmonic Motion. For Example spring-mass system
The restoring force or acceleration acting on the particle should always be proportional to the displacement of the particle and directed towards the equilibrium position.
When a system oscillates angular long with respect to a fixed axis then its motion is called angular simple harmonic motion.
The restoring torque (or) Angular acceleration acting on the particle should always be proportional to the angular displacement of the particle and directed towards the equilibrium position.
Τ ∝ θ or α ∝ θ
Where,