Given:
Total magnetic dipole moment \(m = 20 \times 10^{-6}\) J/T (equivalent to A·m\(^2\)).
Volume of the cube \(V = (1 \, \text{cm})^3 = (10^{-2} \, \text{m})^3 = 10^{-6} \, \text{m}^3\).
Applied magnetic intensity (field strength) \(H = 60 \times 10^3\) A/m.
First, calculate the Magnetization (\(M\)), which is the magnetic dipole moment per unit volume:
$$ M = \frac{m}{V} = \frac{20 \times 10^{-6} \, \text{A}\cdot\text{m}^2}{10^{-6} \, \text{m}^3} = 20 \, \text{A/m} $$
Magnetic susceptibility (\(\chi\)) is defined as the ratio of magnetization (\(M\)) to the applied magnetic intensity (\(H\)):
$$ \chi = \frac{M}{H} $$
$$ \chi = \frac{20 \, \text{A/m}}{60 \times 10^3 \, \text{A/m}} = \frac{20}{60000} = \frac{1}{3000} $$
$$ \chi = \frac{1}{3} \times 10^{-3} \approx 0.
33(3).
.
\times 10^{-3} = (3)3(3).
.
\times 10^{-4} $$
The magnetic susceptibility is approximately \((3)3 \times 10^{-4}\).
Susceptibility is dimensionless.