When the metal plate is inserted, the capacitance of the capacitor changes. Let $C_i$ be the initial capacitance and $C_f$ be the final capacitance.
The initial capacitance is \[C_i = \frac{\epsilon_0 A}{d}.\]After the metal plate is inserted, the capacitor is effectively divided into two capacitors in series, each with plate separation $\frac{d}{4}$. The capacitance of each of these capacitors is \[\frac{\epsilon_0 A}{d/4} = \frac{4 \epsilon_0 A}{d},\]so the final capacitance is \[\frac{1}{C_f} = \frac{1}{\frac{4 \epsilon_0 A}{d}} + \frac{1}{\frac{4 \epsilon_0 A}{d}} = \frac{d}{2 \epsilon_0 A},\]which means $C_f = \frac{2 \epsilon_0 A}{d}$. The initial energy stored in the capacitor is \[U_i = \frac{1}{2} C_i V^2 = \frac{1}{2} \cdot \frac{\epsilon_0 A}{d} \cdot V^2 = \frac{\epsilon_0 A V^2}{2d}.\]Since the battery is disconnected, the charge $Q$ on the capacitor remains constant. Then $Q = C_i V = C_f V_f$, where $V_f$ is the final potential difference across the capacitor. Hence, \[V_f = \frac{C_i}{C_f} V = \frac{\frac{\epsilon_0 A}{d}}{\frac{2 \epsilon_0 A}{d}} V = \frac{V}{2}.\]The final energy stored in the capacitor is \[U_f = \frac{1}{2} C_f V_f^2 = \frac{1}{2} \cdot \frac{2 \epsilon_0 A}{d} \cdot \left( \frac{V}{2} \right)^2 = \frac{\epsilon_0 A V^2}{4d}.\]The work done on the metal slab is equal to the change in energy stored in the capacitor: \[W = U_f - U_i = \frac{\epsilon_0 A V^2}{4d} - \frac{\epsilon_0 A V^2}{2d} = \boxed{-\frac{\epsilon_0 A V^2}{4d}}.\] Final Answer: \( -\frac{\epsilon_0 A V^2}{4d} \)
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:

If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: