Let \( f(x) \) be defined as follows:
\[ f(x) = \begin{cases} 3x, & \text{if } x < 0 \\ \min(1+x+\lfloor x \rfloor, 2+x\lfloor x \rfloor), & \text{if } 0 \leq x \leq 2 \\ 5, & \text{if } x > 2 \end{cases} \]
where \(\lfloor . \rfloor\) denotes the greatest integer function. If \(\alpha\) and \(\beta\) are the number of points, where \(f\) is not continuous and is not differentiable, respectively, then \(\alpha + \beta\) equals: