Step 1: Recall formula for Fermi wavevector in 1D.
For a one-dimensional electron gas, the density of states fills from $-k_F$ to $+k_F$. Taking spin degeneracy into account:
\[
n = \frac{2k_F}{2\pi/L} . \frac{1}{L} = \frac{2k_F}{\pi}
\]
where $n$ is the electron density per unit length.
Step 2: Rearrangement.
\[
k_F = \frac{\pi n}{2}
\]
Step 3: Substitute the given density.
Given $n = 10^8 \, electrons/cm = 10^{10} \, electrons/m$:
\[
k_F = \frac{\pi \times 10^{10}}{2} \approx 1.57 \times 10^{10} \, m^{-1}
\]
Step 4: Fermi energy formula.
\[
E_F = \frac{\hbar^2 k_F^2}{2m}
\]
Substituting the given constant:
\[
E_F = 0.24 \times (k_F)^2
\]
Note: $k_F$ must be expressed in $nm^{-1}$ to match unit convention.
Convert $k_F$:
\[
k_F = 1.57 \times 10^{10} \, m^{-1} = 15.7 \, nm^{-1}
\]
Step 5: Final calculation.
\[
E_F = 0.24 \times (15.7)^2 = 0.24 \times 246.49 = 59.16 \, eV
\]
Final Answer:
\[
\boxed{59.16 \, eV}
\]