Let the required number be \( N \) such that:
\[ N \equiv 2 \mod 4, \quad N \equiv 3 \mod 5, \quad N \equiv 4 \mod 6 \]
Rewriting all as:
\[ N \equiv -2 \mod 4 \Rightarrow N \equiv 2 \mod 4 \\ N \equiv -2 \mod 5 \Rightarrow N \equiv 3 \mod 5 \\ N \equiv -2 \mod 6 \Rightarrow N \equiv 4 \mod 6 \]
So in all cases:
\[ N + 2 \equiv 0 \mod 4,5,6 \\ \Rightarrow N + 2 = \text{LCM}(4,5,6) = 60 \\ \Rightarrow N = 60 - 2 = \boxed{58} \]





For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: