Using the equation \( P = \frac{mc^2}{t} \), we can solve for mass \( m \): \[ m = \frac{P \cdot t}{c^2} \]
Given values:
Substituting the given values into the equation:
\[ m = \frac{(3 \times 10^8)^2 \cdot 10^9}{3600 \cdot 10^{16}} \]
Simplifying the equation:
\[ m = \frac{9 \times 10^{16}}{36 \times 10^{11}} = 4 \times 10^{-5} \, \text{kg} \]
Therefore, the mass \( m \) is: 0.04 g
The power equation is given by:
\( P = \frac{E}{t} = \frac{1}{2} mv^2 \)
Substitute the given values: \( P = 10^9 \), \( t = 3600 \, \text{sec} \), and \( v = 9 \times 10^{16} \, \text{m/s} \):
\( 10^9 = \frac{1}{2} m \times (9 \times 10^{16})^2 \)
Now, solve for the mass \( m \):
\( m = \frac{2 \times 10^9}{(9 \times 10^{16})^2} \)
After calculating:
\( m = 4 \times 10^{-5} \, \text{kg} \)
Converting the mass to grams:
\( m = 4 \times 10^{-5} \times 10^3 = 4 \times 10^{-2} \, \text{g} = 0.04 \, \text{g} \)
Therefore, the mass \( m \) is \( 0.04 \, \text{g} \).