Step 1: Use the freezing point depression formula \[ \Delta T_f = i \times K_f \times m \] where: - \(\Delta T_f\) is the depression in freezing point, - \(K_f\) is the cryoscopic constant, - \(m\) is the molality of the solute. 
Step 2: Calculate the new freezing point \[ T_f = T_0 - \Delta T_f \] where: - \( T_0 \) is the normal freezing point of water (273 K), - \( \Delta T_f \) is given as 0.052 K. \[ T_f = 273 - 0.052 \] Step 3: Compute the final answer \[ T_f = 272.814 { K} \] Thus, the correct answer is \(\mathbf{272.814 \, K}\).
The density of \(\beta\)-Fe is 7.6 g/cm\(^3\). It crystallizes in a cubic lattice with \( a = 290 \) pm. 
What is the value of \( Z \)? (\( Fe = 56 \) g/mol, \( N_A = 6.022 \times 10^{23} \) mol\(^{-1}\))
Arrange the following in the increasing order of number of unpaired electrons present in the central metal ion: 
I. \([MnCl_6]^{4-}\) 
II. \([FeF_6]^{3-}\) 
III. \([Mn(CN)_6]^{3-}\) 
IV. \([Fe(CN)_6]^{3-}\) 
 
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: