The total resistance of the parallel combination is:
\[
R_{\text{total}} = \frac{5 \, \Omega \times 0.5 \, \Omega}{5 \, \Omega + 0.5 \, \Omega} = \frac{2.5}{5.5} = 0.4545 \, \Omega
\]
Now, the maximum current is calculated using Ohm's law:
\[
I_{\text{max}} = \frac{V}{R_{\text{total}}} = \frac{1 \, \text{V}}{0.4545 \, \Omega} \approx 10 \, \text{mA}
\]
Thus, the maximum current is 10 mA.
Thus, the correct answer is 10 mA.