The car is moving on a circular path, so it experiences both tangential and centripetal acceleration.
Step 1: Centripetal acceleration The centripetal acceleration is given by the formula: \[ a_c = \frac{v^2}{r} \] where \( v = 40 \, {m/s} \) and \( r = 400 \, {m} \). Substituting the values: \[ a_c = \frac{(40)^2}{400} = 4 \, {m/s}^2. \]
Step 2: Total acceleration The total acceleration is the sum of the tangential and centripetal accelerations: \[ a_{{total}} = \sqrt{a_t^2 + a_c^2} \] where \( a_t = 3 \, {m/s}^2 \) is the tangential acceleration. Substituting the values: \[ a_{{total}} = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \, {m/s}^2. \] Thus, the total acceleration is \( 5 \, {m/s}^2 \).
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:

If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: