The limit of resolution (angular resolution) of a telescope with a circular aperture is given by the Rayleigh criterion:
$\theta_{min} \approx 1.22 \frac{\lambda}{D}$
where $\theta_{min}$ is the minimum resolvable angle (in radians), $\lambda$ is the wavelength of light, and $D$ is the diameter of the telescope's objective lens or mirror.
Given values:
Wavelength $\lambda = 6000 \text{ \AA} = 6000 \times 10^{-10} \text{ m} = 6 \times 10^{-7} \text{ m}$.
Diameter of the telescope $D = 100 \text{ inches}$.
We need to convert inches to meters.
$1 \text{ inch} = 2.54 \text{ cm} = 0.0254 \text{ m}$.
So, $D = 100 \times 0.0254 \text{ m} = 2.54 \text{ m}$.
Now, substitute these values into the formula for $\theta_{min}$:
$\theta_{min} \approx 1.22 \times \frac{6 \times 10^{-7} \text{ m}}{2.54 \text{ m}}$.
$\theta_{min} \approx 1.22 \times \frac{6}{2.54} \times 10^{-7} \text{ rad}$.
$\frac{6}{2.54} \approx 2.3622$.
$\theta_{min} \approx 1.22 \times 2.3622 \times 10^{-7} \text{ rad}$.
$1.22 \times 2.3622 \approx 2.881884$.
So, $\theta_{min} \approx 2.88 \times 10^{-7} \text{ rad}$.
This value is closest to option (c) $2.9 \times 10^{-7}$ rad.
\[ \boxed{2.9 \times 10^{-7} \text{ rad}} \]