Step 1: Use the group-velocity definition from a two-wave packet.
For two nearby waves, the group velocity is
\[
v_g=\frac{\Delta \omega}{\Delta k} =
\frac{2\pi\,\Delta f}{2\pi\,\Delta(1/\lambda)}
= \frac{\Delta f}{\left(\frac{1}{\lambda_2}-\frac{1}{\lambda_1}\right)}.
\]
Step 2: Substitute the numbers.
\[
\Delta f = f_2-f_1 = 0.30-0.24 = 0.06\ \text{Hz},
\]
\[
\Delta\!\left(\frac{1}{\lambda}\right)
= \frac{1}{10}-\frac{1}{16}=0.1000-0.0625=0.0375\ \text{km}^{-1}.
\]
Step 3: Compute \(v_g\).
\[
v_g=\frac{0.06}{0.0375}=1.6\ \text{km/s}.
\]
\[
\boxed{1.6\ \text{km/s}}
\]