Step 1: Use the formula for adiabatic work done:
\[
W = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1}
\]
For a monatomic gas, \( \gamma = \frac{5}{3} \). Since it's an adiabatic process:
\[
W = \frac{P_1 V_1}{\gamma - 1} \left[ 1 - \left( \frac{V_1}{V_2} \right)^{\gamma - 1} \right]
\]
Step 2: Given:
\[
P_1 = 100 \times 10^3 \, \text{Pa},
V_2 = 8 V_1,
W = 180 \, \text{J}
\]
Substitute values:
\[
180 = \frac{100 \times 10^3 . V_1}{5/3 - 1} \left[ 1 - \left( \frac{1}{8} \right)^{2/3} \right]
\]
\[
\Rightarrow 180 = \frac{100000 . V_1}{2/3} \left[ 1 - \left( \frac{1}{8} \right)^{2/3} \right]
\]
Step 3: Compute numerically:
\[
\left( \frac{1}{8} \right)^{2/3} = \left( 2^{-3} \right)^{2/3} = 2^{-2} = \frac{1}{4}
\]
\[
\Rightarrow 180 = \frac{100000 . V_1}{2/3} \left( 1 - \frac{1}{4} \right) = \frac{100000 . V_1}{2/3} . \frac{3}{4}
\]
\[
\Rightarrow 180 = 100000 . V_1 . \frac{3}{2} . \frac{3}{4} = 100000 . V_1 . \frac{9}{8}
\]
Step 4: Solve for \( V_1 \):
\[
V_1 = \frac{180 . 8}{100000 . 9} = \frac{1440}{900000} = 0.0016 \, \text{m}^3 = 1600 \, \text{cm}^3
\]
\[
\boxed{V_1 = 1600 \, \text{cm}^3}
\]