Question:

A monatomic gas at a pressure of 100 kPa expands adiabatically such that its final volume becomes 8 times its initial volume. If the work done during the process is 180 J, then the initial volume of the gas is

Show Hint

In adiabatic processes, remember to use the formula for work with correct value of \( \gamma \). For monatomic gases, \( \gamma = \frac{5}{3} \). Convert volume units carefully.
Updated On: Jun 6, 2025
  • 1600 cm\(^3\)
  • 800 cm\(^3\)
  • 1200 cm\(^3\)
  • 2000 cm\(^3\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use the formula for adiabatic work done: \[ W = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1} \] For a monatomic gas, \( \gamma = \frac{5}{3} \). Since it's an adiabatic process: \[ W = \frac{P_1 V_1}{\gamma - 1} \left[ 1 - \left( \frac{V_1}{V_2} \right)^{\gamma - 1} \right] \] Step 2: Given: \[ P_1 = 100 \times 10^3 \, \text{Pa},
V_2 = 8 V_1,
W = 180 \, \text{J} \] Substitute values: \[ 180 = \frac{100 \times 10^3 . V_1}{5/3 - 1} \left[ 1 - \left( \frac{1}{8} \right)^{2/3} \right] \] \[ \Rightarrow 180 = \frac{100000 . V_1}{2/3} \left[ 1 - \left( \frac{1}{8} \right)^{2/3} \right] \] Step 3: Compute numerically: \[ \left( \frac{1}{8} \right)^{2/3} = \left( 2^{-3} \right)^{2/3} = 2^{-2} = \frac{1}{4} \] \[ \Rightarrow 180 = \frac{100000 . V_1}{2/3} \left( 1 - \frac{1}{4} \right) = \frac{100000 . V_1}{2/3} . \frac{3}{4} \] \[ \Rightarrow 180 = 100000 . V_1 . \frac{3}{2} . \frac{3}{4} = 100000 . V_1 . \frac{9}{8} \] Step 4: Solve for \( V_1 \): \[ V_1 = \frac{180 . 8}{100000 . 9} = \frac{1440}{900000} = 0.0016 \, \text{m}^3 = 1600 \, \text{cm}^3 \] \[ \boxed{V_1 = 1600 \, \text{cm}^3} \]
Was this answer helpful?
0
0

Top Questions on Thermodynamics

View More Questions